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Abstract 

As a typical clustering algorithm based on the density, DBSCAN shows good performance in spatial data clustering. When clustering 

large-scale database, DBSCAN requires the overhead of memory and I/O. With the development of high-performance computers and 

the appearance of cluster computers in particular, this gives us a way to solve the defects of DBSCAN. The paper presents an improved 

parallel DBSCAN algorithm DPQR based on data partition and QR*-tree. According to the distribution of data on one or more 

dimensions, the entire data space is divided into a number of local regions. Each local region is transmitted to a processing unit. The 

processing unit calculates local k-dist graph for local region to get the local value Eps, and builds QR*-tree. DPQR executes the partial 

clustering on QR*-tree. Finally, the clustering results are merged in accordance with the merging rules. Experimental results show that 
DPQR is better than DBSCAN. 
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1 Introduction 

 

Spatial database manages spatial objects such as points and 

polygons. In recent years, a large number of data which 

modern technical tools (satellite remote sensing and X-ray 

imaging and so on) generate is stored in the spatial data. 

The knowledge discovery on the large-scale spatial 

database has become particularly important. Data 

clustering is a major issue in the field of data mining. The 

data in the database would be divided into sub-classes with 

a certain sense. Data from different sub-classes is as 

dissimilar as possible, and data from the same sub-class is 

as similar as possible. So far, the researchers have 

presented many data clustering algorithms, such as 

CLARANS, BIRCH, DBSCAN [1], CURE, STING, 

CLIQUE and Wave cluster and so on. All of these 

algorithms are trying to solve the problem about data 

clustering on large-scale databases [2]. 

DBSCAN is a spatial clustering algorithm based on the 

density. The algorithm uses the concept of density-based 

clustering. The number of the objects which a certain 

region in the space contains is not less than a given 

threshold. The significant advantage of DBSCAN is fast 

clustering. DBSCAN can effectively deal with the noise 

points (outliers) and discover the clusters of arbitrary 

shape. Because DBSCAN operates directly on the whole 

database, and uses a global parameter which represents the 

density, DBSCAN has two obvious weaknesses. The first 

weakness is requiring larger memory support. The second 

weakness is larger I/O consumption. When the density of 

spatial data is uneven, and the distance between the 
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clusters varies greatly, the quality of clustering is relatively 

poor. 

To solve these problems, this paper proposes an 

improved parallel DBSCAN algorithm DPQR based on 

data partition and QR*-tree. According to the spatial 

distribution of data, divide the entire data space into 

multiple smaller partitions. Then cluster these partial 

partitions. Eventually merge each local cluster. The 

experimental results show that this method is effective. 

This paper is organized as follows. Section 2 

introduces related works; Section 3 briefs the basic idea of 

DBSCAN, and analyzes its limitations; Section 4 

introduces the structure of QR*-tree; Section 5 presents an 

improved parallel DBSCAN algorithm DPQR based on 

data partition and QR*-tree; Section 6 describes the 

experimental results; Section 7 summarizes the paper, and 

points out the focus of future work. 

 

2 The related works 

 

For the advantages and disadvantages of DBSCAN, many 

scholars have conducted many studies. The paper [3] has 

proposed the algorithm SDBSCAN based on data 

sampling. The algorithm uses data sampling to extend 

DBSCAN. So that it can effectively carry out clustering 

analysis on large-scale database. It uses a fast clustering 

tagging method. Thus this increases speed and efficiency 

of the whole process of clustering. The paper [4] has 

proposed the algorithm PDBSCAN based on data 

partition. This method determines the breakpoints 

according to the diagram of data distribution. According to 
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the data distribution, determine which dimension to be 

divided, how many regions to be divided. As to the 

sensitive issue for the parameters, the paper [5] has 

proposed an improved algorithm DBSCANCC (DBSCAN 

with Cluster Connection). It solves the problem of the poor 

clustering results due to the improper parameter Eps. 

Thereby this shields the sensitivity of input parameters of 

the algorithm, and maintains higher efficiency. The paper 

[6] has proposed a parallel DBSCAN algorithm based on 

data overlap. After the data partition, each partition is sent 

to a processor. The processor processes parallel clustering, 

and finally merges local clustering. The paper [7] has 

proposed a fast clustering algorithm FDBSCAN based on 

the density. The algorithm selects the representative 

objects of all the objects in the neighborhood of the core 

object as the seed objects to extend the cluster. Thereby the 

algorithm reduces the number of region query and I/O 

overhead to achieve rapid clustering. 

These algorithms significantly improve the speed of 

clustering. But the time complexity of them is still 

relatively high, and I/O consumption of them is not very 

satisfactory. 

 

3 DBSCAN 

 

DBSCAN which Ester Martin proposed is a clustering 

method of spatial data based on the density. The central 

idea is that for each object in a cluster, at a given radius 

Eps of the neighborhood, the number of data objects must 

be greater than a given value. In other words, the density 

of the neighborhood must exceed a certain threshold 

MinPts. To find a cluster, DBSCAN finds any object p 

from D, and finds all the objects which are density-

reachable from p according to the parameters Eps and 

MinPts. 

If p is a core object, that is the number of objects which 

Eps-neighborhood of p contains is not less than MinPts, 

the algorithm finds a cluster according to the parameters 

Eps and MinPts. If p is a boundary point, that is the number 

of objects which the Eps-neighborhood of p contains is less 

than MinPts, no object is density-reachable from p. The 

point p is temporarily marked as noise point. Then, 

DBSCAN handles the next object in database D. 

Get all the data objects which is density-reachable from 

a core object by repeated region query to achieve. A 

regional query returns all objects in a given query region. 

R*-tree implements this query. Therefore, before 

performing clustering, R*-tree must be built. 

DBSCAN requires the user to specify a global value 

Eps. To reduce the amount of the computation, MinPts is 

set to 4. To determine Eps, DBSCAN need to calculate the 

distance from all the data objects to its k nearest-neighbor 

objects, and the results are sorted by the distance to get k-

dist graph. 

The horizontal coordinate of k-dist graph shows the 

distances from the data objects to its k nearest-neighbor 

objects. The vertical coordinate of k-dist graph shows the 

number of the objects corresponding to a distance value. 

To establish R*-tree and draw k-dist graph is very time-

consuming task, especially in large-scale database. In 

addition, users have to repeat the test, select the 

appropriate k-dist value in order to achieve better 

clustering results. 

In the absence of any pre-processing, DBSCAN 

directly operates the entire database. On the one hand, 

DBSCAN requires a lot of memory and I/O overhead; On 

the other hand, since the global value of Eps is used, the 

size of the neighborhood in the data space is the same. 

The distance between the clusters and the distribution 

of the density are uneven. If a smaller value of Eps is 

selected based on those dense clusters, then the number of 

data objects in their neighborhood will be less than MinPts 

for those dilute clusters. These objects will be considered 

to be boundary objects which are not used for further 

expansion. So the dilute cluster is divided into multiple 

similar clusters. On the contrary, if a larger value of Eps is 

selected according to those dilute clusters, then those 

clusters which are closer and denser will likely be merged 

into the same cluster. The differences between them will 

be ignored because of choosing the larger value Eps. 

Obviously it is difficult to select an appropriate value Eps 

to obtain more accurate clustering results in both cases. 

 

4 The structure of QR*-tree 

 

QR*-tree is a spatial index structure, which is a 

combination of quad-tree [8] and R*-tree [9]. Suppose d>0 

and 
1

0

(2 )
d

k l

l

n




  (k is the dimension of the space, d is the 

depth of quad-tree), QR* is composed of d-depth quad-tree 

Qt and n R*-trees. Qt has a total of n nodes, which are 

expressed as Qt0, Qt1,…, Qtn-1. Qt divides data space S into 

n d-level sub-spaces which are expressed as S0, S1,…, Sn-1 

(S0=S). All subspaces of each level are disjoint, and 

constitute the entire index space S together. [10] The n R*-

trees are expressed as Rt0, Rt1,…, Rtn-1, respectively are 

associated with n nodes and n sub-spaces of Qt. Si is 

associated with Rti. Rti is used to index space objects which 

belong to Si. That the space object P belongs to Si refers to 

1) P completely falls on Si or Si completely surrounds 

P, 

2) Si is the smallest sub-space which completely 

surrounds P. Figure 1 is an example of two-dimensional 

QR*-tree. In this example, QR*-tree is composed of two-

depth quad-tree and five R*-trees. Entire space is divided 

into five two-level sub-spaces which are expressed as S0, 

S1, S2, S3, S4 (S0=S1S2S3S4). Rt0, Rt1, Rt2, Rt3, Rt4 are 

associated with them. S1 is the minimal sub-space which 

encloses r1. Therefore, r1 is assigned to Rt1. S0 is the 

minimal subspace which encloses r2. Therefore, r2 is 

assigned to Rt0. QR*-tree is composed of quad-tree and R*-

tree. The node structure of R*-tree is shown below. Leaf 

node: (COUNT, LEVEL, <OI1,MBR1>, 

<OI2,MBR2>,…,<OIm,MBRm>); Non-leaf node: (COUNT, 

LEVEL, <CP1,MBR1>, <CP2,MBR2>,…,<CPm,MBRm>). 
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OIi of leaf node is the identifier of space object, and MBRi 

is the minimal constraint rectangle of space object in the k-

dimensional space. CPi of non-leaf node is the pointer 

pointing to the root node of the sub-tree, and MBRi 

represents the index space of the sub-tree. See Figure 1. 
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b) The structure diagram of QR* 

FIGURE 1 QR*-tree in two-dimensional space 

 

5 DPQR 

 

When clustering large-scale database, data partitioning is 

an effective method. For DBSCAN, the data partition has 

following benefits. 

1) In the clustering process, once DBSCAN finds a 

core object, the object is as the center to expanse outward. 

In this process, the number of core objects will continue to 

increase. Unprocessed core objects are retained in 

memory. If there is a very large cluster in the database, the 

memory demand used for storing information of core 

objects will be large and unpredictable. Then dividing the 

data into partitions can avoid this situation. 

2) As analyzed in Section 3, due to the use of global 

value Eps, when the distribution of the density and the 

distance between the clusters are uneven, DBSCAN will 

be difficult to get a clustering result of higher quality. 

Partition the data and select local value Eps, these should 

be able to reduce or avoid the above problem of the 

deterioration of the clustering quality. This is the case 

shown in Figure 3(a). Obviously, there are five categories 

in Figure 4. Three left clusters are dense and close. Two 

right clusters are sparse. If the density of right clusters is 

referenced to select the value of Eps, DBSCAN may merge 

three left clusters into one cluster. Conversely, if the 

density of left clusters is referenced to select the value of 

Eps, the right cluster will be decomposed into many sub-

clusters. Even generate many noises. In this case, 

DBSCAN cannot select the appropriate value for the 

clustering of data. 

Based on the above considerations, the paper presents 

an improved parallel DBSCAN algorithm DPQR based on 

data partition and QR*-tree. The basic idea of DPQR is: 

according to the distribution of data on one or more 

dimensions, the entire database space is divided into a 

number of local regions. The purpose is to make the data 

of each local region evenly distributed. Each local region 

is transmitted to a processing unit. The processing unit 

calculates local k-dist graph for local region to get the local 

value Eps, and builds QR*-tree. DPQR executes partial 

clustering on QR*-tree. Finally, the clustering results 

obtained are merged in accordance with the merging rules. 

Since each local region uses its local value Eps to cluster, 

the original problems of clustering quality caused by the 

use of global value Eps can be alleviated or even 

eliminated. 

 

5.1 THE PARTITION OF DATA SETS 

 

Data partitioning solves the problems about much memory 

occupying and I/O excessive consumption in the process 

of using DBSCAN. At the same time, the idea of parallel 

processing is introduced. But the idea of parallel 

processing is build on the theory of data partition. 

Data partitioning algorithm Partition is described 

below: 

Input: one-dimensional data file of samples F, the 

number of processors N. 

Output: dividing points S on each dimension. 

Begin 

Step 1: according to the number of samples, determine 

the number of the groups m, the maximum max and 

minimum min in the sample data; 

Step 2: calculate the step 
max min

d
m


 ; 

Step 3: for i=1 to m do 

calculate the density of the step i; 

store m vectors (starting point of step, ending point of step, 

i); 

Step 4: for i=1 to m do 

if (i has no change or i increases monotonically or i 

decreases monotonically) then  

allocate on average N/Ki; 

determine S (S=N/Ki-1) demarcation points; 

else 

determine the absolute value of the difference between 

adjacent wave peaks is greater than the threshold . If the 

condition is satisfied, write down the coordinate Si which 

the wave valley So corresponds to 

S=SSi; 

Step 5: output all the division points S; 
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End. 

Use this method to determine the division points 

respectively on the x-axis and y-axis. Define a partition 

vector Vi(i=X or Y)=(Pi0, Pi1,…, Pin). Define the kth interval 

on the ith dimension as Iik=[lik, hik]. So each rectangle is 

Cartesian produce [l1k1, h1k1]*[l2k2, h2k2] of two dimensional 

different intervals. This rectangle is called the grid. Each 

grid can be represented by the expression 

(l1k1xh1k1l2k2yh2k2). This grid can be defined as (K1, 

K2) using the coordinates. Divide the uniform distribution 

data into the rectangular grids. Thus assign each grid to 

multiple processors to separately cluster. After this 

processing, data distribution is more uniform. The 

selection of value Eps will not affect the various regions. 

This improves the quality of clustering. On the other hand, 

multiple processors cluster the data. Thereby the efficiency 

of clustering is increased. 

 

5.2 THE SELECTION OF THE SEED POINT 

 

Select the point in the neighborhood of hollow spherical of 

core point as the seed point. With the number of seed 

points reducing, the number of region queries reduces, I/O 

overhead decreases, clusters expanse rapidly. 

Note that the neighborhoods of the points in the same 

neighborhood will overwrite each other. When the 

neighborhood of a point is completely covered by the 

neighborhood of another point, its neighborhood can be 

got through the region query of this point. This means that 

the point is not necessary as a seed point. This point is 

basically in the inner neighborhood. Therefore, the points 

in the outer ring of the neighborhood are as seed points. 

Figure 2 shows the process of selecting the seed point. See 

Figure 2. 

Eps x*Eps

 

FIGURE 2 The diagram of selecting the seed point 

 

The larger the value x is, the smaller the selection range 

of seed points is. The more inadequate cluster extension is, 

the more serious error division is. Thus error rate of 

clustering is the higher. The smaller the value x is, the 

larger the selection range of seed points is. The more the 

number of region query is, the slower the clustering speed 

is. The experiments show that when x is 60%, the quality 

and speed of clustering can achieve the best balance. 

 

5.3 CLUSTERING AND MERGING OF PARTITION 

DATA 

 

After each data partition is clustered, there are some cases 

need to be considered. A point z respectively belongs to 

the clusters C1 and C2, and is the core point in C1 and C2; 

A point z respectively belongs to the clusters C1 and C2, is 

the core point of C1 and is the boundary point of C2; A 

point z belongs to the cluster C1, is noise point to another 

cluster; A point z is noise point both times. These cases 

require separate treatment. The following rules are 

obtained. 

Rule 1: for point z, cluster C1 and C2, if zC1 and zC2, 

z is the core point of C1 and C2, C1 and C2 can be merged 

into one cluster; 

Rule 2: for point z, cluster C1 and C2, if zC1 and zC2, 

z is the core point of C1 and z is the boundary point of C2, 

C1 and C2 can be merged into one cluster; 

Rule 3: for point z, cluster C1 and C2, if zC1 and zC2 

and z is the boundary point of C1 and C2, z belongs to C1 

or C2 and C1 and C2 cannot be merged into one cluster; 

Rule 4: if z belongs to C1 and z is a noise point to C2, 

C1 and C2 cannot be merged into one cluster; 

Rule 5: if z is a noise point to C1 and C2, z is a noise 

point in the global clustering. 

 

5.4 THE BASIC FRAMEWORK OF THE 

ALGORITHM DPQR 

 

The algorithm DPQR is described as follows: For a given 

database D and MinPts, parameter Eps which k-dist graph 

obtains, any element E in D has m dimensions E (E1, E2,…, 

Em), D is divided into n partitions each of which has the 

same amount of data approximately. Steps are as follows: 

Step 1: for any integer i (1im), database D is 

projected on the ith dimension. That is ED, EEi. 

Database D is mapped to a one-dimensional data set Di, 

Di={Ei | E (E1, E2,…, Em)D}. During projection, 

algorithm Partition divides data sets into partitions. 

Declare a variable tmp which is assigned an initial value of 

m.  

Step 2: A is the lower limit of dataset Di, and B is the 

upper limit of dataset Di. Data set Di distributes in the 

interval [A, B]; 

Step 3: find the sequence a0, a1,…, an to satisfy 

A=a0<a1<a2<…<an=B (0in-1); 

Step 4: If the partition results meet the Step 3, then go 

to Step 6; 

Step 5: If the partition results do not satisfy Step 3 and 

tmp>1, then tmp=tmp-1 and go to Step 1; If the partition 

results do not satisfy Step 3 and tmp1, then go to Step 10; 

Step 6: Partition results are processed redundantly. 

Modify the partition intervals to [a0, a1+Eps], [a1-Eps, 

a2+Eps],…, [ai-Eps, ai+1+Eps],…, [an-1-Eps, an](i=2, 3,…, 

n-2). For convenience, modified partitions are named as 

C1, C2,…, Ci+1,…, Cn; 

Step 7: Ci (i=1, 2,…, n) is sent to the ith processor 

memory; 

Step 8: Each processor node uses DPQR to cluster local 

data. The ith partition is a case. 

Step 8.1: For a given partition Ci build QR*-tree; 

Step 8.2: For a given partition Ci, calculate k-dist 

diagram to get Epsi; 
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Step 8.3: Initialize each point to the initial state. 

Initialize the queue seeds of seed points to NULL. 

Initialize the result set results to NULL; 

Step 8.4: define tag ID of the first cluster as 1; 

Step 8.5: obtain the first point in partition Ci to cluster; 

Step 8.6: execute region query of points on QR*-tree, 

and return the query results; 

Step 8.7: According to MinPts, determine whether this 

point is a core point. If it is not a core point, it is recorded 

as a noise point; If it is a core point, all points are marked 

as current ID. Then find next point from point set Fseeds. 

The distance from the point in Fseeds to the core point is 

in the range of 0.6Epsi to Epsi. The processed points have 

been removed from the Fseeds until Fseeds is empty. 

Step 8.8: get the next point in partition Ci to cluster, 

increase label ID by 1, until all points in partition Ci have 

been processed; 

Step 9: Cluster merging. The ith processor (1in-1) 

transmits the cluster data to (i+1)th processor. The (i+1)th 

processor compares the cluster data. If point z belongs to 

cluster Ci and Ci+1, is the core point in Ci and Ci+1, Ci and 

Ci+1 are merged into one cluster; If point z belongs to Ci 

and Ci+1, z is the core point of Ci and z is the boundary point 

of Ci+1, Ci and Ci+1 can be merged into one cluster; if zCi 

and zCi+1 and z is the boundary point of Ci and Ci+1, z 

belongs to Ci or Ci+1 and Ci and Ci+1 cannot be merged into 

one cluster; if z is a noise point to C1 and C2, z is a noise 

point in the global clustering. 

Step 10: the algorithm ends. 

 

6 Experimental results 

 

The experimental data set is composed of 5 clusters. The 

distance of three clusters on the left is relatively close, and 

the density of them is relatively large. The distance 

between two clusters on the right is relatively far, and the 

density of them is relatively thin. The implementation 

environment of DPQR algorithm uses high-performance 

cluster computer. Its nodes are interconnected through a 

high-speed 100Mbps network. The number of available 

nodes is ten. The memory of each node is 512MB. The 

hard disk is 15GB. CPU is PIII 500MHz. The operating 

system is Redhat Linux. On the basis of DBSCAN 

packages Martin Easter developed, implement DPQR with 

MPI and C++. See Figure 3. 

 

 

 

a)  b) 

FIGURE 3 The experimental data sets 

The experimental steps of DBSCAN algorithm are as 

follows: 

Step 1: the value MinPts is 4. This is the value which 

Martin Easter determines by a large number of 

experiments; 

Step 2: determine the value of Eps. 

When the value of Eps is 2.24, the result is shown in 

Figure 4a. The number of clusters on the left is 3. However 

the number of clusters on the right is 36. Distinguish 

between different clusters with different colors. When the 

value of Eps is 3.63, the result is shown in Figure 4b. The 

number of clusters on the left is 3. However the number of 

clusters on the right is 24. When the value of Eps is 4.5, 

the result is shown in Figure 4c. The number of clusters on 

the left is 1. However the number of clusters on the right 

is 2. See Figure 4. 

 

   

a) Eps=2.24 b) Eps=3.63 c) Eps=4.5 

FIGURE 4 The result when Eps=2.24, 3.63, 4.5 

In order to discuss the efficiency of running time, 

execute DBSCAN on two-dimensional large-scale data. 

The statistical results are shown in Table 1. 

 
TABLE 1 The average running time of DBSCAN and DPQR 

The number of 

data 

Running time of 

DBSCAN (ms) 

Running time of 

DPQR (ms) 

256 269 268 

512 371 347 

1024 618 598 

5000 3156 1765 

10000 5048 2648 

20000 11560 3754 

30000 14890 4987 

40000 20044 7231 

50000 32078 9684 

60000 75641 12450 
 

First DPQR determines the value of MinPts. The value 

of MinPts is 4. DPQR divides the experimental data set 

into two partitions, left partition and right partition. The 

value of Eps of left partition is 2.3. The value of Eps of 

right partition is 4.49. The obtained results are shown in 

Figure 3b. 

As shown in Figure 3b, left partition is divided into 

three clusters; Right partition is divided into two clusters. 

Then discuss the efficiency of running time, DPQR 

processes large-scale data set. The results are shown in 

Table 1. 

The clustering result which the algorithm DBSCAN 

obtains is not ideal. When dealing with data sets of uneven 

density distribution, the clustering quality of the algorithm 

DBSCAN is not high. Mainly due to the uneven 

distribution of the density, there is unable to find the value 

of Eps which is suitable for the regions of large and small 

density. When the value of Eps is too small, it is suitable 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 209-214 Xu Hongbo, Yao Nianmin, Han Qilong, Pan Haiwei 

214 

for large density regions to cluster, and the small density 

regions are clustered too much. When the value of Eps is 

too large, it is suitable for small density regions to cluster, 

and the large density regions are clustered too much. 

The clustering result of DPQR is ideal. Because select 

different Eps for different density regions. The problem 

which improper selection of Eps causes does not occur. 

When processing the data of less than 10000, the 

difference of the performance is not particularly large. 

When processing the data of larger than 20000, the time 

performance of DPQR is better. The running time of 

DPQR increases moderately. This is more suitable for 

handling large data sets. 

 

7 Conclusions 

 

The paper presents a parallel algorithm DPQR based on 

data partition and QR*-tree. According to the spatial 

distribution of data, the entire data space is divided into 

multiple smaller partitions. So that local density of the 

partitions is relatively more uniform. Then each local 

partition is respectively sent to a processing unit. Establish 

QR*-tree on the basis of each processing unit to improve 

the efficiency of region query. Finally, the clustering 

results are merged in accordance with the merging rules. 

Experimental results show that the algorithm DPQR can 

reduce the consumption of memory and I/O. For data sets 

of uneven density, clustering works well. This has been 

greatly improved relative to the algorithm DBSCAN. 
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