

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 209-214 Xu Hongbo, Yao Nianmin, Han Qilong, Pan Haiwei

209

DPQR: an improved parallel DBSCAN algorithm based on data
partition and QR*-tree

Hongbo Xu*, Nianmin Yao, Qilong Han, Haiwei Pan

College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, Heilongjiang, China

Received 1 June 2014, www.cmnt.lv

Abstract

As a typical clustering algorithm based on the density, DBSCAN shows good performance in spatial data clustering. When clustering

large-scale database, DBSCAN requires the overhead of memory and I/O. With the development of high-performance computers and

the appearance of cluster computers in particular, this gives us a way to solve the defects of DBSCAN. The paper presents an improved

parallel DBSCAN algorithm DPQR based on data partition and QR*-tree. According to the distribution of data on one or more

dimensions, the entire data space is divided into a number of local regions. Each local region is transmitted to a processing unit. The

processing unit calculates local k-dist graph for local region to get the local value Eps, and builds QR*-tree. DPQR executes the partial

clustering on QR*-tree. Finally, the clustering results are merged in accordance with the merging rules. Experimental results show that
DPQR is better than DBSCAN.

Keywords: large-scale database, clustering, data partition, DBSCAN, parallel computing

1 Introduction

Spatial database manages spatial objects such as points and

polygons. In recent years, a large number of data which

modern technical tools (satellite remote sensing and X-ray

imaging and so on) generate is stored in the spatial data.

The knowledge discovery on the large-scale spatial

database has become particularly important. Data

clustering is a major issue in the field of data mining. The

data in the database would be divided into sub-classes with

a certain sense. Data from different sub-classes is as

dissimilar as possible, and data from the same sub-class is

as similar as possible. So far, the researchers have

presented many data clustering algorithms, such as

CLARANS, BIRCH, DBSCAN [1], CURE, STING,

CLIQUE and Wave cluster and so on. All of these

algorithms are trying to solve the problem about data

clustering on large-scale databases [2].

DBSCAN is a spatial clustering algorithm based on the

density. The algorithm uses the concept of density-based

clustering. The number of the objects which a certain

region in the space contains is not less than a given

threshold. The significant advantage of DBSCAN is fast

clustering. DBSCAN can effectively deal with the noise

points (outliers) and discover the clusters of arbitrary

shape. Because DBSCAN operates directly on the whole

database, and uses a global parameter which represents the

density, DBSCAN has two obvious weaknesses. The first

weakness is requiring larger memory support. The second

weakness is larger I/O consumption. When the density of

spatial data is uneven, and the distance between the

* Corresponding author’s e-mail: xhb0451@qq.com

clusters varies greatly, the quality of clustering is relatively

poor.

To solve these problems, this paper proposes an

improved parallel DBSCAN algorithm DPQR based on

data partition and QR*-tree. According to the spatial

distribution of data, divide the entire data space into

multiple smaller partitions. Then cluster these partial

partitions. Eventually merge each local cluster. The

experimental results show that this method is effective.

This paper is organized as follows. Section 2

introduces related works; Section 3 briefs the basic idea of

DBSCAN, and analyzes its limitations; Section 4

introduces the structure of QR*-tree; Section 5 presents an

improved parallel DBSCAN algorithm DPQR based on

data partition and QR*-tree; Section 6 describes the

experimental results; Section 7 summarizes the paper, and

points out the focus of future work.

2 The related works

For the advantages and disadvantages of DBSCAN, many

scholars have conducted many studies. The paper [3] has

proposed the algorithm SDBSCAN based on data

sampling. The algorithm uses data sampling to extend

DBSCAN. So that it can effectively carry out clustering

analysis on large-scale database. It uses a fast clustering

tagging method. Thus this increases speed and efficiency

of the whole process of clustering. The paper [4] has

proposed the algorithm PDBSCAN based on data

partition. This method determines the breakpoints

according to the diagram of data distribution. According to

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 209-214 Xu Hongbo, Yao Nianmin, Han Qilong, Pan Haiwei

210

the data distribution, determine which dimension to be

divided, how many regions to be divided. As to the

sensitive issue for the parameters, the paper [5] has

proposed an improved algorithm DBSCANCC (DBSCAN

with Cluster Connection). It solves the problem of the poor

clustering results due to the improper parameter Eps.

Thereby this shields the sensitivity of input parameters of

the algorithm, and maintains higher efficiency. The paper

[6] has proposed a parallel DBSCAN algorithm based on

data overlap. After the data partition, each partition is sent

to a processor. The processor processes parallel clustering,

and finally merges local clustering. The paper [7] has

proposed a fast clustering algorithm FDBSCAN based on

the density. The algorithm selects the representative

objects of all the objects in the neighborhood of the core

object as the seed objects to extend the cluster. Thereby the

algorithm reduces the number of region query and I/O

overhead to achieve rapid clustering.

These algorithms significantly improve the speed of

clustering. But the time complexity of them is still

relatively high, and I/O consumption of them is not very

satisfactory.

3 DBSCAN

DBSCAN which Ester Martin proposed is a clustering

method of spatial data based on the density. The central

idea is that for each object in a cluster, at a given radius

Eps of the neighborhood, the number of data objects must

be greater than a given value. In other words, the density

of the neighborhood must exceed a certain threshold

MinPts. To find a cluster, DBSCAN finds any object p

from D, and finds all the objects which are density-

reachable from p according to the parameters Eps and

MinPts.

If p is a core object, that is the number of objects which

Eps-neighborhood of p contains is not less than MinPts,

the algorithm finds a cluster according to the parameters

Eps and MinPts. If p is a boundary point, that is the number

of objects which the Eps-neighborhood of p contains is less

than MinPts, no object is density-reachable from p. The

point p is temporarily marked as noise point. Then,

DBSCAN handles the next object in database D.

Get all the data objects which is density-reachable from

a core object by repeated region query to achieve. A

regional query returns all objects in a given query region.

R*-tree implements this query. Therefore, before

performing clustering, R*-tree must be built.

DBSCAN requires the user to specify a global value

Eps. To reduce the amount of the computation, MinPts is

set to 4. To determine Eps, DBSCAN need to calculate the

distance from all the data objects to its k nearest-neighbor

objects, and the results are sorted by the distance to get k-

dist graph.

The horizontal coordinate of k-dist graph shows the

distances from the data objects to its k nearest-neighbor

objects. The vertical coordinate of k-dist graph shows the

number of the objects corresponding to a distance value.

To establish R*-tree and draw k-dist graph is very time-

consuming task, especially in large-scale database. In

addition, users have to repeat the test, select the

appropriate k-dist value in order to achieve better

clustering results.

In the absence of any pre-processing, DBSCAN

directly operates the entire database. On the one hand,

DBSCAN requires a lot of memory and I/O overhead; On

the other hand, since the global value of Eps is used, the

size of the neighborhood in the data space is the same.

The distance between the clusters and the distribution

of the density are uneven. If a smaller value of Eps is

selected based on those dense clusters, then the number of

data objects in their neighborhood will be less than MinPts

for those dilute clusters. These objects will be considered

to be boundary objects which are not used for further

expansion. So the dilute cluster is divided into multiple

similar clusters. On the contrary, if a larger value of Eps is

selected according to those dilute clusters, then those

clusters which are closer and denser will likely be merged

into the same cluster. The differences between them will

be ignored because of choosing the larger value Eps.

Obviously it is difficult to select an appropriate value Eps

to obtain more accurate clustering results in both cases.

4 The structure of QR*-tree

QR*-tree is a spatial index structure, which is a

combination of quad-tree [8] and R*-tree [9]. Suppose d>0

and
1

0

(2)
d

k l

l

n




 (k is the dimension of the space, d is the

depth of quad-tree), QR* is composed of d-depth quad-tree

Qt and n R*-trees. Qt has a total of n nodes, which are

expressed as Qt0, Qt1,…, Qtn-1. Qt divides data space S into

n d-level sub-spaces which are expressed as S0, S1,…, Sn-1

(S0=S). All subspaces of each level are disjoint, and

constitute the entire index space S together. [10] The n R*-

trees are expressed as Rt0, Rt1,…, Rtn-1, respectively are

associated with n nodes and n sub-spaces of Qt. Si is

associated with Rti. Rti is used to index space objects which

belong to Si. That the space object P belongs to Si refers to

1) P completely falls on Si or Si completely surrounds

P,

2) Si is the smallest sub-space which completely

surrounds P. Figure 1 is an example of two-dimensional

QR*-tree. In this example, QR*-tree is composed of two-

depth quad-tree and five R*-trees. Entire space is divided

into five two-level sub-spaces which are expressed as S0,

S1, S2, S3, S4 (S0=S1S2S3S4). Rt0, Rt1, Rt2, Rt3, Rt4 are

associated with them. S1 is the minimal sub-space which

encloses r1. Therefore, r1 is assigned to Rt1. S0 is the

minimal subspace which encloses r2. Therefore, r2 is

assigned to Rt0. QR*-tree is composed of quad-tree and R*-

tree. The node structure of R*-tree is shown below. Leaf

node: (COUNT, LEVEL, <OI1,MBR1>,

<OI2,MBR2>,…,<OIm,MBRm>); Non-leaf node: (COUNT,

LEVEL, <CP1,MBR1>, <CP2,MBR2>,…,<CPm,MBRm>).

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 209-214 Xu Hongbo, Yao Nianmin, Han Qilong, Pan Haiwei

211

OIi of leaf node is the identifier of space object, and MBRi

is the minimal constraint rectangle of space object in the k-

dimensional space. CPi of non-leaf node is the pointer

pointing to the root node of the sub-tree, and MBRi

represents the index space of the sub-tree. See Figure 1.

r2

r1

r8
R4

r1

0

r6
R3

r7

S2

R1

r5

r1

1
r3

r9

QR

r4

R2

S1

S0

S3 S4

a) The diagram of space division

S0 Rt0

S1 Rt1 S2 Rt2 S3 Rt3 S4 Rt4

R1 R2

r2 r11 r9 r3

Rt0

R3 R4

r6 r10 r8 r1

Rt1

r7Rt2 r5Rt3 r4Rt4

b) The structure diagram of QR*

FIGURE 1 QR*-tree in two-dimensional space

5 DPQR

When clustering large-scale database, data partitioning is

an effective method. For DBSCAN, the data partition has

following benefits.

1) In the clustering process, once DBSCAN finds a

core object, the object is as the center to expanse outward.

In this process, the number of core objects will continue to

increase. Unprocessed core objects are retained in

memory. If there is a very large cluster in the database, the

memory demand used for storing information of core

objects will be large and unpredictable. Then dividing the

data into partitions can avoid this situation.

2) As analyzed in Section 3, due to the use of global

value Eps, when the distribution of the density and the

distance between the clusters are uneven, DBSCAN will

be difficult to get a clustering result of higher quality.

Partition the data and select local value Eps, these should

be able to reduce or avoid the above problem of the

deterioration of the clustering quality. This is the case

shown in Figure 3(a). Obviously, there are five categories

in Figure 4. Three left clusters are dense and close. Two

right clusters are sparse. If the density of right clusters is

referenced to select the value of Eps, DBSCAN may merge

three left clusters into one cluster. Conversely, if the

density of left clusters is referenced to select the value of

Eps, the right cluster will be decomposed into many sub-

clusters. Even generate many noises. In this case,

DBSCAN cannot select the appropriate value for the

clustering of data.

Based on the above considerations, the paper presents

an improved parallel DBSCAN algorithm DPQR based on

data partition and QR*-tree. The basic idea of DPQR is:

according to the distribution of data on one or more

dimensions, the entire database space is divided into a

number of local regions. The purpose is to make the data

of each local region evenly distributed. Each local region

is transmitted to a processing unit. The processing unit

calculates local k-dist graph for local region to get the local

value Eps, and builds QR*-tree. DPQR executes partial

clustering on QR*-tree. Finally, the clustering results

obtained are merged in accordance with the merging rules.

Since each local region uses its local value Eps to cluster,

the original problems of clustering quality caused by the

use of global value Eps can be alleviated or even

eliminated.

5.1 THE PARTITION OF DATA SETS

Data partitioning solves the problems about much memory

occupying and I/O excessive consumption in the process

of using DBSCAN. At the same time, the idea of parallel

processing is introduced. But the idea of parallel

processing is build on the theory of data partition.

Data partitioning algorithm Partition is described

below:

Input: one-dimensional data file of samples F, the

number of processors N.

Output: dividing points S on each dimension.

Begin

Step 1: according to the number of samples, determine

the number of the groups m, the maximum max and

minimum min in the sample data;

Step 2: calculate the step
max min

d
m


 ;

Step 3: for i=1 to m do

calculate the density of the step i;

store m vectors (starting point of step, ending point of step,

i);

Step 4: for i=1 to m do

if (i has no change or i increases monotonically or i

decreases monotonically) then

allocate on average N/Ki;

determine S (S=N/Ki-1) demarcation points;

else

determine the absolute value of the difference between

adjacent wave peaks is greater than the threshold . If the

condition is satisfied, write down the coordinate Si which

the wave valley So corresponds to

S=SSi;

Step 5: output all the division points S;

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 209-214 Xu Hongbo, Yao Nianmin, Han Qilong, Pan Haiwei

212

End.

Use this method to determine the division points

respectively on the x-axis and y-axis. Define a partition

vector Vi(i=X or Y)=(Pi0, Pi1,…, Pin). Define the kth interval

on the ith dimension as Iik=[lik, hik]. So each rectangle is

Cartesian produce [l1k1, h1k1]*[l2k2, h2k2] of two dimensional

different intervals. This rectangle is called the grid. Each

grid can be represented by the expression

(l1k1xh1k1l2k2yh2k2). This grid can be defined as (K1,

K2) using the coordinates. Divide the uniform distribution

data into the rectangular grids. Thus assign each grid to

multiple processors to separately cluster. After this

processing, data distribution is more uniform. The

selection of value Eps will not affect the various regions.

This improves the quality of clustering. On the other hand,

multiple processors cluster the data. Thereby the efficiency

of clustering is increased.

5.2 THE SELECTION OF THE SEED POINT

Select the point in the neighborhood of hollow spherical of

core point as the seed point. With the number of seed

points reducing, the number of region queries reduces, I/O

overhead decreases, clusters expanse rapidly.

Note that the neighborhoods of the points in the same

neighborhood will overwrite each other. When the

neighborhood of a point is completely covered by the

neighborhood of another point, its neighborhood can be

got through the region query of this point. This means that

the point is not necessary as a seed point. This point is

basically in the inner neighborhood. Therefore, the points

in the outer ring of the neighborhood are as seed points.

Figure 2 shows the process of selecting the seed point. See

Figure 2.

Eps x*Eps

FIGURE 2 The diagram of selecting the seed point

The larger the value x is, the smaller the selection range

of seed points is. The more inadequate cluster extension is,

the more serious error division is. Thus error rate of

clustering is the higher. The smaller the value x is, the

larger the selection range of seed points is. The more the

number of region query is, the slower the clustering speed

is. The experiments show that when x is 60%, the quality

and speed of clustering can achieve the best balance.

5.3 CLUSTERING AND MERGING OF PARTITION

DATA

After each data partition is clustered, there are some cases

need to be considered. A point z respectively belongs to

the clusters C1 and C2, and is the core point in C1 and C2;

A point z respectively belongs to the clusters C1 and C2, is

the core point of C1 and is the boundary point of C2; A

point z belongs to the cluster C1, is noise point to another

cluster; A point z is noise point both times. These cases

require separate treatment. The following rules are

obtained.

Rule 1: for point z, cluster C1 and C2, if zC1 and zC2,

z is the core point of C1 and C2, C1 and C2 can be merged

into one cluster;

Rule 2: for point z, cluster C1 and C2, if zC1 and zC2,

z is the core point of C1 and z is the boundary point of C2,

C1 and C2 can be merged into one cluster;

Rule 3: for point z, cluster C1 and C2, if zC1 and zC2

and z is the boundary point of C1 and C2, z belongs to C1

or C2 and C1 and C2 cannot be merged into one cluster;

Rule 4: if z belongs to C1 and z is a noise point to C2,

C1 and C2 cannot be merged into one cluster;

Rule 5: if z is a noise point to C1 and C2, z is a noise

point in the global clustering.

5.4 THE BASIC FRAMEWORK OF THE

ALGORITHM DPQR

The algorithm DPQR is described as follows: For a given

database D and MinPts, parameter Eps which k-dist graph

obtains, any element E in D has m dimensions E (E1, E2,…,

Em), D is divided into n partitions each of which has the

same amount of data approximately. Steps are as follows:

Step 1: for any integer i (1im), database D is

projected on the ith dimension. That is ED, EEi.

Database D is mapped to a one-dimensional data set Di,

Di={Ei | E (E1, E2,…, Em)D}. During projection,

algorithm Partition divides data sets into partitions.

Declare a variable tmp which is assigned an initial value of

m.

Step 2: A is the lower limit of dataset Di, and B is the

upper limit of dataset Di. Data set Di distributes in the

interval [A, B];

Step 3: find the sequence a0, a1,…, an to satisfy

A=a0<a1<a2<…<an=B (0in-1);

Step 4: If the partition results meet the Step 3, then go

to Step 6;

Step 5: If the partition results do not satisfy Step 3 and

tmp>1, then tmp=tmp-1 and go to Step 1; If the partition

results do not satisfy Step 3 and tmp1, then go to Step 10;

Step 6: Partition results are processed redundantly.

Modify the partition intervals to [a0, a1+Eps], [a1-Eps,

a2+Eps],…, [ai-Eps, ai+1+Eps],…, [an-1-Eps, an](i=2, 3,…,

n-2). For convenience, modified partitions are named as

C1, C2,…, Ci+1,…, Cn;

Step 7: Ci (i=1, 2,…, n) is sent to the ith processor

memory;

Step 8: Each processor node uses DPQR to cluster local

data. The ith partition is a case.

Step 8.1: For a given partition Ci build QR*-tree;

Step 8.2: For a given partition Ci, calculate k-dist

diagram to get Epsi;

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 209-214 Xu Hongbo, Yao Nianmin, Han Qilong, Pan Haiwei

213

Step 8.3: Initialize each point to the initial state.

Initialize the queue seeds of seed points to NULL.

Initialize the result set results to NULL;

Step 8.4: define tag ID of the first cluster as 1;

Step 8.5: obtain the first point in partition Ci to cluster;

Step 8.6: execute region query of points on QR*-tree,

and return the query results;

Step 8.7: According to MinPts, determine whether this

point is a core point. If it is not a core point, it is recorded

as a noise point; If it is a core point, all points are marked

as current ID. Then find next point from point set Fseeds.

The distance from the point in Fseeds to the core point is

in the range of 0.6Epsi to Epsi. The processed points have

been removed from the Fseeds until Fseeds is empty.

Step 8.8: get the next point in partition Ci to cluster,

increase label ID by 1, until all points in partition Ci have

been processed;

Step 9: Cluster merging. The ith processor (1in-1)

transmits the cluster data to (i+1)th processor. The (i+1)th

processor compares the cluster data. If point z belongs to

cluster Ci and Ci+1, is the core point in Ci and Ci+1, Ci and

Ci+1 are merged into one cluster; If point z belongs to Ci

and Ci+1, z is the core point of Ci and z is the boundary point

of Ci+1, Ci and Ci+1 can be merged into one cluster; if zCi

and zCi+1 and z is the boundary point of Ci and Ci+1, z

belongs to Ci or Ci+1 and Ci and Ci+1 cannot be merged into

one cluster; if z is a noise point to C1 and C2, z is a noise

point in the global clustering.

Step 10: the algorithm ends.

6 Experimental results

The experimental data set is composed of 5 clusters. The

distance of three clusters on the left is relatively close, and

the density of them is relatively large. The distance

between two clusters on the right is relatively far, and the

density of them is relatively thin. The implementation

environment of DPQR algorithm uses high-performance

cluster computer. Its nodes are interconnected through a

high-speed 100Mbps network. The number of available

nodes is ten. The memory of each node is 512MB. The

hard disk is 15GB. CPU is PIII 500MHz. The operating

system is Redhat Linux. On the basis of DBSCAN

packages Martin Easter developed, implement DPQR with

MPI and C++. See Figure 3.

a) b)

FIGURE 3 The experimental data sets

The experimental steps of DBSCAN algorithm are as

follows:

Step 1: the value MinPts is 4. This is the value which

Martin Easter determines by a large number of

experiments;

Step 2: determine the value of Eps.

When the value of Eps is 2.24, the result is shown in

Figure 4a. The number of clusters on the left is 3. However

the number of clusters on the right is 36. Distinguish

between different clusters with different colors. When the

value of Eps is 3.63, the result is shown in Figure 4b. The

number of clusters on the left is 3. However the number of

clusters on the right is 24. When the value of Eps is 4.5,

the result is shown in Figure 4c. The number of clusters on

the left is 1. However the number of clusters on the right

is 2. See Figure 4.

a) Eps=2.24 b) Eps=3.63 c) Eps=4.5

FIGURE 4 The result when Eps=2.24, 3.63, 4.5

In order to discuss the efficiency of running time,

execute DBSCAN on two-dimensional large-scale data.

The statistical results are shown in Table 1.

TABLE 1 The average running time of DBSCAN and DPQR

The number of

data

Running time of

DBSCAN (ms)

Running time of

DPQR (ms)

256 269 268

512 371 347

1024 618 598

5000 3156 1765

10000 5048 2648

20000 11560 3754

30000 14890 4987

40000 20044 7231

50000 32078 9684

60000 75641 12450

First DPQR determines the value of MinPts. The value

of MinPts is 4. DPQR divides the experimental data set

into two partitions, left partition and right partition. The

value of Eps of left partition is 2.3. The value of Eps of

right partition is 4.49. The obtained results are shown in

Figure 3b.

As shown in Figure 3b, left partition is divided into

three clusters; Right partition is divided into two clusters.

Then discuss the efficiency of running time, DPQR

processes large-scale data set. The results are shown in

Table 1.

The clustering result which the algorithm DBSCAN

obtains is not ideal. When dealing with data sets of uneven

density distribution, the clustering quality of the algorithm

DBSCAN is not high. Mainly due to the uneven

distribution of the density, there is unable to find the value

of Eps which is suitable for the regions of large and small

density. When the value of Eps is too small, it is suitable

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 209-214 Xu Hongbo, Yao Nianmin, Han Qilong, Pan Haiwei

214

for large density regions to cluster, and the small density

regions are clustered too much. When the value of Eps is

too large, it is suitable for small density regions to cluster,

and the large density regions are clustered too much.

The clustering result of DPQR is ideal. Because select

different Eps for different density regions. The problem

which improper selection of Eps causes does not occur.

When processing the data of less than 10000, the

difference of the performance is not particularly large.

When processing the data of larger than 20000, the time

performance of DPQR is better. The running time of

DPQR increases moderately. This is more suitable for

handling large data sets.

7 Conclusions

The paper presents a parallel algorithm DPQR based on

data partition and QR*-tree. According to the spatial

distribution of data, the entire data space is divided into

multiple smaller partitions. So that local density of the

partitions is relatively more uniform. Then each local

partition is respectively sent to a processing unit. Establish

QR*-tree on the basis of each processing unit to improve

the efficiency of region query. Finally, the clustering

results are merged in accordance with the merging rules.

Experimental results show that the algorithm DPQR can

reduce the consumption of memory and I/O. For data sets

of uneven density, clustering works well. This has been

greatly improved relative to the algorithm DBSCAN.

Acknowledgments

This work was financially supported by National Natural

Science Foundation of China (61073047, 61272184),

Fundamental Research Funds for the Central Universities

(HEUCFT1202, HEUCFT100609), Harbin Special Funds

for Technological Innovation Talents (2012RFLXG023).

References

[1] Ester M, Kriegel H-P, Sander J, Xu X 1996 A Density-Based

Algorithm for Discovering Clusters in Large Spatial Databases with
Noise In Proceedings of 2nd International Conference on

Knowledge Discovery and Data Mining (KDD-96) Portland ACM

Press 226-31
[2] Han J, Kamber M, Pei J 2012 Data mining Concepts and Techniques

Third Edition China Machine Press

[3] Zhou S-g, Fan Y, Zhou A-y 2012 SDBSCAN: A sampling-based
DBSCAN algorithm for large-scale spatial database [J] Mini-Micro

System 21(12) 1270-4

[4] Zhou S-G, Zhou A-Y, Cao J 2000 A data-partitioning-based
DBSCAN algorithm Journal of Computer Research and

Development 37(10) 1153-9

[5] Cai Y, Xie K, Ma X 2004 An Improved DBSCAN Algorithm which

is Insensitive to Input Parameters Acta Scientiarum Naturalium
Universitatis Pekinensis 40(3) 480-6

[6] Song M, Liu Z-t 2004 A Data-overlap-partitioning-based Parallel

DBSCAN Algorithm Computer Application Research (7) 17-20
[7] Zhou S-G, Zhou A-Y, Cao J, Hu Y-F 2000 A fast density-based

clustering algorithm Journal of Computer Research and

Development 37(10) 1287-92
[8] Hao Z 2011 New spatio-temporal database theory Science Press

[9] Beckmann N, Kriegel H-P, Schneider R, Seeger B 1998 The R*-tree:

An Efficient and Robust Access Method for Points and Rectangles
Proc Of ACM SIGMOD International Conference on Management

of Data Atlantic ACM Press 73-84

[10] Qiu J-h, Tang X-b, Huang H-g 2003 An index structure based Quad-

tree and R*-tree-QR*-tree Computer Applications 23(8) 124-7

Authors

Hongbo Xu, 29.02.1980, China.

Current position, grades: postdoctoral at Harbin Engineering University, China.
University studies: PhD degree in computer science and technology from Harbin University of Science and Technology, China in 2010.
Scientific interest: parallel algorithm, index structure and massive information processing.

Nianmin Yao, 26.09.1974, China.

Current position, grades: a professor at Harbin Engineering University, China.
University studies: PhD degree in computer science and technology from Jilin University, China in 2003.
Scientific interest: network storage, system performance analysis and theory of computation.

Qilong Han, 25.07.1974, China.

Current position, grades: associate professor at Harbin Engineering University, China.
University studies: PhD degree in computer science and technology from Harbin Institute of Technology, China in 2006.
Scientific interest: spatio-temporal data mining, graph mining, sensitive data protection, massive information processing and real-time database.

Haiwei Pan, 15.07.1974, China.

Current position, grades: associate professor at Harbin Engineering University, China.
University studies: PhD degree in computer science and technology from Harbin Institute of Technology, China in 2006.
Scientific interest: data mining, multimedia mining, massive data processing and information retrieval.

